PHYSICAL REVIEW E VOLUME 62, NUMBER 2 AUGUST 2000

Cold-fluid equilibrium for a corkscrewing elliptic beam in a variably focusing channel
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It is shown that there exists a new class of cold-fluid corkscrewing elliptic beam equilibria for ultrahigh-
brightness, space-charge-dominated beam propagation through a linear focusing channel consisting of uniform
solenoidal, periodic solenoidal, and/or alternating-gradient quadrupole focusing magnets in an arbitrary ar-
rangement including field tapering. The equilibrium beam density and flow velocity profiles and equilibrium
self-electric and self-magnetic fields are determined by solving generalized beam envelope equations. In proper
limits, such cold-fluid corkscrewing elliptic beam equilibria recover many familiar beam equilibria in beam
physics, including the round rigid-rotor Vlasov beam equilibria in uniform and periodic solenoidal focusing
fields and the Kapchinskij-Vladimirskij beam equilibrium in an alternating-gradient quadrupole focusing field.
For beams with negligibly small emittance, the equilibrium solutions are validated with self-consistent simu-
lations. Examples and applications of the present equilibrium beam theory are discussed. As an important
application of the present equilibrium beam theory, a general technique is developed and demonstrated with an
example to control large-amplitude density and flow velocity fluctuatisnsh as beam hollowing and halo
formation often observed in ultrahigh-brightness beams.

PACS numbdis): 29.27-a, 41.75-i, 41.85—p

I. INTRODUCTION beams, many undesirable phenomena can occur, including
chaotic particle motiofi8] and chaotic beam envelope oscil-
The equilibrium and stability properties of charged- lations[9], beam halo formatiof10], beam hollowing 11],
particle beams have been an important subject of investigeemittance growth12], and multimode excitations, as ob-
tion in beam physics, plasma physics, and vacuum electrorserved in recent high-intensity beam experiments.
ics. Indeed, the principles of vacuum electron[dg are In this paper, we present exact steady-state solutions to
based on electron beam interactions with radio-frequencyhe cold-fluid equations governing the evolution of an
structures, and the discovery of strong focusing in the earlyltrahigh-brightness, space-charge-dominated beam propa-
1950s[2] has provided the scientific basis for modern par-gating through a linear focusing channel consisting of uni-
ticle accelerators such as synchrotrons, linacs, and higtferm solenoidal, periodic solenoidal, and alternating-gradient
energy colliders. quadrupole focusing magnets in an arbitrary arrangement in-
Recently, there have been vigorous activities in the recluding field tapering. The equilibrium beam density and
search and development of high-intensity vacuum electroniflow velocity profiles and equilibrium self-electric and self-
devices and high-intensity accelerators in order to meet themagnetic fields are determined by solving generalized beam
needs in communication, in high-energy and nuclear physicenvelope equations. For beams with negligibly small emit-
research, in the development of spallation neutron sources, tance, these steady-state solutions are validated with self-
heavy ion fusion applications, and in advanced x-ray radiogeonsistent simulations using the Green’s function method. In
raphy, to mention a few examples. general, these steady-state solutions correspond to cork-
In the design of high-intensity charged-particle beam sysscrewing elliptic beam equilibria. They recover many famil-
tems, the most challenging task is to properly match highiar beam equilibria in beam physics, such as the cold-fluid
intensity beams into focusing systems, so that the beams areund rigid-rotor equilibrium[13,14 and both the periodi-
in equilibrium or quasiequilibrium states in the combinationcally focused rigid-rotor Vlasov equilibrium[15] and
of applied fields and self-fields3]. A widely used tool for  Kapchinskij-Vladimirskij equilibrium [16] in the zero-
the determination of matching conditions of high-intensity emittance limit.
charged-particle beam systems is based on the rms beam Examples and applications of the present equilibrium
description[4—7]. However, rms beam matching is inad- beam theory are discussed. As a simple example, a cork-
equate for ultrahigh-brightness beams, because detailed iserewing elliptic beam equilibrium in a uniform solenoidal
formation about the beam dynamics, especially the evolutiomagnetic field is obtained. As an important application of the
of the density and flow velocity profiles, is lost by perform- present equilibrium beam theory, a general technique is de-
ing phase-space averages in the rms analysis. In general, rmsloped and demonstrated with an example to control large-
beam matching does not guarantee well-behaved beam traremplitude density and flow velocity fluctuatiofsuch as
port if the beam becomes space-charge dominated. In fadteam hollowing and halo formatipnoften observed in
without detailed equilibrium flow matching of high-intensity ultrahigh-brightness beams. For comparison, we investigate
numerically the beam transport for distributions that substan-
tially deviate from the equilibrium solutions. In this case, the
*Present address: Instituto de Fisica, Universidade Federal do Riaccurrence of beam hollowing and halo formation is found.
Grande do Sul, Caixa Postal 15051, 91501-970 Porto Alegre, RAs a final example, we consider an ultrahigh-brightness
Brazil. beam equilibrium in a periodic focusing channel consisting
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of overlapping solenoidal and quadrupole focusing fields to

illustrate a wide range of applicability of the present equilib-

rium beam theory in manipulating ultrahigh-brightness

beams. b(s) a(s)
The paper is organized as follows. In Sec. Il, steady-state 0(s)

cold-fluid equations are presented for transverse electrostatic 0

and magnetostatic interactions in a high-intensity charged-

particle beam propagating through a linear focusing channel

with general magnetic focusing field profile. In Sec. lll, an

equilibrium solution to the steady-state cold-fluid equations

presented in Sec. Il is obtained and generalized beam enve- FIG. 1. Laboratory and rotating coordinate systems.

lope equations for equilibrium flow are derived. In Sec. 1V, it

is shown that the steady-state cold-fluid solutions found in 9 ang

Sec. lll recover familiar beam equilibria in proper limits. In Ny ,8b0£+VL : ﬁ) 1= m

Sec. V, examples and applications of the present equilibrium + o

beam theory are discussed. Conclusions are given in Sec. VI.
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IIl. THEORETICAL MODEL AND ASSUMPTIONS 2 )
_ _ _ _ _ wherex, =x&+y8&,, y,=(1—Bf) 2 and the self-electric
We consider a thin, continuous, ultrahigh-brightnessang self-magnetic field& and BS are determined from the
space-charge-dominated beam propagating with constagtajar and vector potentialss and A%, i.e., ES= -V ¢
axial velocity B,c&, through a linear focusing channel with 4 BS=V X A%,. In Sec. IIl, it W?" be shown that the
multiple pgriodic sqlenoidal and alt'erna'ting—gradient quadrux teady-state cZold-fluid equatioi2)—(4) support a class of
pole focusing sections. The focusing fields can be tapere_ olutions that, in general, describe corkscrewing elliptic

and the quadrup_oles_ are allowed to be at vari_ous_ angles Heam equilibria in the magnetic focusing field defined in Eq.
the transverse direction. The focusing magnetic field is ap(l)_

proximated by

Ill. CORKSCREWING BEAM EQUILIBRIUM

1
Bo(X)=B,(s)&,— zB;(s)(xéer y&,) In this section, we show that there exists a class of solu-
tions to the steady-state cold-fluid equatig@s—(4) which,
+(IBY 5y) (Yot X&) (1) in general, describe corkscrewing elliptic beam equilibria for
X 1

ultrahigh-brightness, space-charge-dominated beam propaga-

tion in the linear focusing channel defined in Eg).
whereB.(s)=(dB,/ds),, s=z is the axial coordinaté, y, We seek solutions to Eqe2)—(4) of the form
&, and & are coordinates and unit vectors of a frame of
reference that is rotated by an anglegfwith respect to the
x axis in the laboratory frame 985/ dy)o=(dBy/9X),, and
the subscript “zero” denotesx(y)=0=(X,y).

In the present analysis,_ we consi(_jer th_e transverse elec- V(X ,8) =[ px(8)X— ax(S)Y1BuCe+ [ my(S)Y
trostatic and magnetostatic interactions in the beam. We
make the usual paraxial approximation, assuming @ahe + ay(S)X]BuCEy . (6)
Budker parameter is small compared with,, i.e.,
a°Ny/yomc@<1, (b) the beam is thin compared with the In Egs.(5) and (6), x, =X&+Y#&; is a transverse displace-
characteristic length scale over which the beam envelopgent in a rotating frame illustrated in Fig. (s) is the
varies, andc) the kinetic energy associated with the trans-angle of rotation of the ellipse with respect to the laboratory
verse particle motion is small compared with that associateffame,®(x) =1 if x>0 and®(x) =0 if x<0, and the func-
with the axial particle motion. tionsa(s), b(s), ux(s), uy(S), ax(s), a,(s), andd(s) are
For an ultrahigh-brightness beam, kinetamittance ef-  to be determined self-consistently.

fects are negligibly small, and the beam can be adequately Substituting Egs(5) and (6) into Eq. (2) and expressing
described by cold-fluid equations. In the paraxial approximathe result in terms of the tilded variables, we find
tion, the steady-state cold-fluid equations for time-stationary

'5’(2 72

61— a%(s) bZ(s)

N

o(X0.8)= o Sb(s)

flow (9/9t=0) are a b X2 y2 a’ 32
SRSy R i L e Py
d b’ y? bo' ad’ bay aa,\Xy
c—np+V, -(n,V,)=0, (2 I I I T Y| 22
Pu gt V(s BRI a b a b)ab
'5’(2 'yZ
V2 ¢5= By IV2 AS= —4mqny, 3 X8| 1= 2= z|=0, (7)
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where the prime denotes derivative with respecs,téd(x)

Ox— Kq sinf2(6— ‘Pq)]zo- (130

=dO(x)/dx, and use has been made of the identities

HKlos=0'y, Fylos=—0'%, and V-F=iFs/dX+dFy/dy

for any vector fieldF. Since Eq.(7) must be satisfied for all

X andy, the coefficients of the terms proportional@ %24,

V268, andXy 8, must vanish independently. This leads to the

following equations:

lda  1db .
MX_E&’ My_BE’ ®)

% B azay— b?a,
ds a’—p?

9

where the functions(s), b(s), a.(s), and ay(s) still re-
main to be determined.

Solving for the scalar and vector potentials from E2),
we obtain

20N,
a+b

_ X ¥?
$°= By, AS=— 2 F) (10
in the beam interior witfk?/a?+y?/b2<1. In deriving Eq.
(10), use has been made Bf = 9%/ %>+ 9%/ Iy>.

To solve the force equatio), we substitute Eqs(5),

(6), and(8)—(10) into Eq.(4), express the results in terms of

the tilded variables, and use the relatiod®/ds= 0"y,
dylos=—0'X, d&lds= 6’8, anddg;/Is= — 0'&;. We ob-
tain

1t Kq cog2(6— (Pq)]}’sl(_{gy*' Kq sin2(6— @q)]}y: 0,
(113

{9x— kg SIN2(0— o) IIX+{fy—kqcO$2(0— ) ]}Y=0
(11b)

in theX andy directions, respectively. In Eql11),

f:Edza b2(a§—2axay)+a2a§_2a S 2K
X ads a’—b? y¥%2  3(a+b)’
(129
1d%  a*(a;—2ayay)+baf 2K
W pazt a?_b? 20K gy
(12b
1(d a*b(ax—a,) d (b
gy:F{d_s[bz(aX+\/Z)]_Wd_s NiE
(120
1(d ab*(ay—a,) d [a
Rl Bl ) _ x Yz
gx_aZ(dS[a (ay+ \/72)] a2_bZ ds\'b ]
(120

Since Egs(113 and(11b) must be satisfied for ak andy,
we obtain the generalized beam envelope equations

fyt+KqC042(60—¢q)]=0, (139
fy—KqC082(0—y)]=0, (13b

gy+ kg SiN2(60—¢q)]=0, (130

Making use of Eq(12), we can express the generalized beam

envelope equations §47]

d’a b2(a’—2aya,)+a%a?
@Jr{xq(s)coﬂ(ﬂ—cpq)]— : az_xbyz -
2K
—Zay@]a—m=0, (149
d%b a’(a’—2aya,)+b%a?
g2+~ Ke(9)c0§2(0—pg) I+ ——r
2K
d a’b(ay—ay) d (b
gsl P (et V)l -— g g 3
+ Kkq(S)b?sIN2(6—@q)1=0, (149
d ab¥(a,—a,) d [a
gel@(ay+ \/K—z)]_#d_s b
— Kkq(S)a?sin2(0—¢q)]1=0, (149
dé azay—bzax_o 14
ds  aZ-bZ (149
_1 da 14
,ufx_ad_sa ( f)
_1db 14
m=F g (149

Equationg8) and(9) are added here as Eqd4e—(149) for
completeness. Equatio$4a—(149), together with the den-
sity and velocity profiles defined in Eq&) and(6), describe
cold-fluid equilibrium states for variably focused ultrahigh-
brightness beams.

IV. LIMITING CASES

A wide variety of cold-fluid beam equilibria can be con-
structed with Eqgs(5), (6), and (14) for proper choices of
magnetic focusing field profiles. While cold-fluid beam equi-
libria are elliptic and corkscrewing in general, they do re-
cover familiar beam equilibria in proper limits. In this sec-
tion, we discuss some of these limiting cases.

First, let us consider the case of an axisymmetric beam in
a periodic solenoidal focusing field witk,(S)= k,(s+9S)

#0, ky(s) =0, anda(s) =a(s+S)=b(s). In this limit, Egs.
(140—(14€ imply that

d0 €4

ds_ =N~ VKAS), (15
where eq=const is an unnormalized emittance associated
with beam rotation relative to the Larmor frequengy,(s).
Equation(15) indicates that the beam rotates at a rate that is
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a periodic function of the axial propagation distarsc&ub-
stituting Eq. (15 into Egs. (143 and (14b), setting ay
= ay, and taking the limia=Db, it is readily shown that the
beam envelope equations reduce to

d?a &5
ag TSR T s

0. (16)

The equilibrium described by Eqg&), (6), (15), and(16) is
identical to the familiar round rigid-rotor Vlasov beam equi-
librium [15] in the zero-emittance limit.

Second, in a uniform magnetic focusing field with(s)
= K,0=CONst, k4(s) =0, anda(s) =b(s), a special solution
to the beam envelope equati¢ib) is

K+ (K2+4x,0e5) Y22

2KZO

a= =const,

17

and the equilibrium recovers the familiar cold-fluid round
rigid-rotor beam equilibrium[13,14. A general class of
corkscrewing elliptical beam equilibria with constant radii
a#b in a uniform solenoidal focusing field is discussed in
detail in Sec. IVA.

As a third limiting case, we consider a nonrotating ellip-

tical beam in an alternating-gradient quadrupole focusing

field with «,(s) =0, ky(S) = k4(s+9S), 6(s)=0, a(s)=a(s
+95), b(s)=b(s+9), and a,(s)=ay(s)=0. In this case,
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halo formation often observed in ultrahigh-brightness beam
experiments. To demonstrate the efficacy of this beam con-
trol technique, the transport for an ultrahigh-brightness beam
with an initial perturbation about the equilibrium transverse
flow velocity is compared with the equilibrium beam trans-
port (Sec. VB.

A. Corkscrewing elliptic beam equilibria
in a uniform magnetic field

As a simple example, we consider corkscrewing elliptic
beam equilibria in a uniform magnetic field witB®"
=B,8,. Setting Vi,(S)= Vk,0=0B,0/2y,B,Mc= const
and kq(s)=0, it can be shown that E414) has the follow-
ing two branches of physically acceptable special solutions:

Egs.(140—(14e are automatically satisfied and the envelope a=a,

equations reduce to

d?a 2K
@-I—Kq(S)a—m:O, (18@
d?b 2K
E— Kq(S)b— mZO. (18b)

Note that the internal flow must satisty,(s) = a,(s)=0 in
order to prevent the beam from rotating with a finité/ds.
The equilibrium described by Eqs5), (6), and (18) corre-
spond to the familiar Kapchinskij-Vladimirskij beam equilib-

rium [16] in alternating-gradient quadrupole magnetic focus-

ing field in the zero-emittance limit.

V. EXAMPLES AND APPLICATIONS

In this section, we discuss three examples of cold-fluid
corkscrewing elliptic beam equilibria predicted by the equi-
librium beam theory presented in Sec. IV. These examples

are (a) cold-fluid corkscrewing elliptic beam equilibria in a
uniform magnetic fieldSec. V A, (b) matching and trans-

ax)llz K ‘|1/2
a=a1= - y
ay Ky~ (ay+ \/KZO)(ay+ VKz0)
b ( ay) 1/2) K 1/2
=b,=|—
Fx Ko~ (ax+ VKZO)(ay+ VK20)
ayay
0(S) = w 5= s+ 6(0), (19)
aytay
for branch A, and
( ax+2 Kzo) 1/2] K 11/2
a’y_"2 Kz0 | k20— (axt+ KZO)(ay+ VK20) ]
b:bz
( ay+2 Kzo) 1/2] K 11/2
ay+ 2\ Ky | K20~ (axt+ Kzo)(ay+ VKz0) |
axay—4K20
0(S)= w,S= s+ 6(0), (20

ax+ ay-l- 4 K30

for branch B. In Eqgs(19) and(20), a, and «, are constant.
For branch A, the conditions for the confinement of cork-
screwing elliptic beam equilibria are

ayINk<0, ayl\VK,n<O,
(ot \/KZO)(ay+ VKz0) < Kzo

(21)

for both positively and negatively charged particle beams.

port of an ultrahigh-brightness round beam generated by 8gecauser, anda, have the same sign, the internal flow for
axisymmetric particle source into an alternating-gradientyranch A is always rotation like. For branch B, the condi-

magnetic quadrupole focusing chanri€ec. VB, and (c)

tions for the confinement of corkscrewing elliptic beam equi-

matching and transport of an ultrahigh-brightness roundipria are
beam into a periodic focusing channel consisting of overlap-

ping solenoidal and quadrupole focusing fie(&gc. V Q.
In addition to illustrating a large class of beam equilibria

predicted by the present equilibrium beam theory, these ex-

ay/\K20>—2, aX/\/Kzo>_2,
(ay+ VKZO)(ay+ VK20) < Kzo

(22

amples are also intended to demonstrate a general technique
for controlling of large-amplitude beam density and flow ve-for both positively and negatively charged particle beams. In
locity fluctuations and associated emittance growth and bearontrast to the internal flow for branch A, the internal flow



PRE 62 COLD-FLUID EQUILIBRIUM FOR A CORKSCREWING . .. 2793

4.0 12.0

3.0
— 2.0 6.0
X 10
< 00 ol
g?x-l() % 00
3

2.0

0 6.0

40 .Y

40 -3.0 -20 -10 0.0 1.0 20 30 40 Y
(ax/,/i?z) +1 0.0 1.0 20 3.0

s/S
FIG. 3. Plot of the focusing parametﬁ?xq as a function of the
propagation distance

FIG. 2. Regions in parameter space for confinement of cork-
screwing elliptic beam equilibria in a uniform magnetic field.

for branch B can be either rotation like with anda, in the trance of the alternating-gradient magnetic focusing channel

same sign or quadrupole flow.hke with anday In apposite (s=0), both beams have the same density profile defined in
signs. Figure 2 shows the regions of the confinement of corkz

. o SO i . EQ. (15), but the transverse flow velocities of the beams are
screwing elliptic beam equilibria in a uniform magnetic field

applicable for both positively and negatively charged particleOf the form[19]

beams. It is important to point out that the familiar cold-fluid dx, X,
round rigid-rotor beam equilibrigl 3,14 are recovered in the =
present analysis by setting,= «, in either Eq.(19) or Eq.
(20), as indicated by the dark solid line shown in Fig. 2.

da

ds

E—g 1+»|1 a2 , (23

2X, oxl)

wherev is a parameter that measures the nonlinearity in the

_ _ velocity profile. For example, an initial velocity profile with
B. Control of halo formation and beam hollowing v>0 in Eq.(23) may model the effects of the concave shape

in ultrahigh brightness beams of a Pierce-type ion diode in the LBNL 2-MV Heavy lon
As discussed in the Introduction, one of the key mechaBeam Injector ExperimentL1]. The value ofv in the LBNL

nisms for halo formation in high-intensity electron or ion experimen{11] is estimated to ber=0.25. For equilibrium

beams is due to a mismatch in the particle phase-space dieeam propagation;=0.

tribution relative to an equilibrium distribution. In general, a  The rms matching for both beams with=0 and 0.25 is

distribution mismatch can lead to rather complex evolutionobtained by numerically solving the rms envelope equations

in a beam, including not only halo formation, but also beam(5]

hollowing. This mechanism for halo formation and beam

hollowing occurs for rms matched beams because rms beam d%a .
matching does not necessarily guarantee the beam in an equi- 12 +Kkg(s)a— ———=0, (243
librium state. d 2(a+b)

For example, both halo formation and beam hollowing
were observed in the heavy ion beam injector experiment at d2b . K
Lawrence Berkeley National LaboratoyBNL) [11], in ——Kq(s)b— — =0, (24b)
which an ultrahigh-brightness, space-charge-dominated po- ds’ 2(a+b)

tassium ion beam was generated with an axisymmetric
Pierce diode and then accelerated by a set of electrostat@)gheregz<x2>1/2 andFE(y2>l’2 are the rms envelopes; -)

quadrupoles. More recently, experimental evidence of beafengtes average over the particle distribution, and emittance
hollowing was found in a high-brightness, space-chargeterms are neglected. For given beam intenkignd focusing
dominated electron beam experiment at University of Mary-channel paramete3; and 7 shown in Fig. 3, we make use
lan,gs[lg]ﬁ important application of the equilibrium beam of Eq. (24) to determine the injection parameters for the

i icati uilibriu . . — —

. tric beam, namelg(0), b(0), a’(0), andb’(0),

theory presented in Sec. IV, we develop and demonstrate aisymme
technique for controlling of beam halo formation and beam>™ well as the strengths of the two quadrupoles centered at

hollowing in ultrahigh-brightness beams. This technique iss >+ ands=3S/4 in the first lattice C, andC,, as shown

widely applicable in the design of ultrahigh-brightnessIn Fig. 3, assuming all quadruples having the same wigth

beams and is effective before any collective instability de—g)nrd gﬂu?:'gsspr?];?gﬁe%ecg:;?n Eii’ﬁ) ng acl;rr:gc:ﬁt:m:rjgr%r:eter
velops to reach considerably large amplitudes. P

To demonstrate the efficacy of this technique, we conside lternating-gradient focusing _sect|on W‘#.S> ?n'”‘egra.“”g
g. (24) from s=S to s=0 yields four implicit functions

here a specific example, namely, the matching of a roun — -
particle beam generated by an axisymmetric particle sourcd(C1,C2), b(C1,C;), a’(C1,Cp), and b’(Cy,Cy). The
into alternating-gradient magnetic quadrupole focusing chanconditions for an initially converging round beam, i.e.,
nel. For comparison, we analyze two nonrotating rmsa(0)=b(0)=a(0)/2=b(0)/2 anda’(0)=b'(0), uniquely
matched beams with the same intensity; one beam will be idetermine the paramete@ andC,, which is done numeri-
equilibrium, and the other beam has an initial perturbatiorcally with Newton’s method. The results are presented in
about the equilibrium transverse flow velocity. At the en-Figs. 3 and 4.
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FIG. 4. Plots of rms beam envelopes versus propagation dis-
tances. Here the solid and dashed curves are obtained fro(@4q. Yo.o Yoo
whereas the solid dots and open circles are from the self-consistent
-3.0 -3.0

simulation for a beam witv=0.25. Heréa andb are normalized to

Ve(0)S. 6.0 6.0
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Figure 3 shows the focusing field parame®i, as a 6.0 ss=25] &° /5=2.5
function of s, where =0.3, C;=2.31, C,=7.44, andC; 3.0 3.0
=10.0. In Fig. 4, the solid and dashed curves show, respec-
tively, the rms matched envelopegs) and H(s) for the Yoo Y00
focusing channel with vacuum phase advange 70.8° and 3.0 3.0
beam perveanc8K/4e(0)=16.0(corresponding to a space-
charge-depressed phase advance©5.4°), where a negli- 60 0 30 00 30 60 %0 30 00 30 60
gibly small unnormalized rms emittance @f(0)=0.15 x x
X 10 ®mrad has been assigned to the bears=a. FIG. 5. Particle distributions in the configuration space #or
Self-consistent simulations are performed witd, =0 (left) and »=0.25 (right). Here the coordinates andy are

=3072 and free-space boundary conditions to study th&ormalized toye(0)S.
phase space evolution for the two beams in the focusing _ _ o )
channel shown in Fig. 3. In Fig. 4, the solid dots and open C. Matching and transport of a beam into a periodic focusing

circles correspond to the rms enveloEds) andg(s) ob- channel consisting of Overla.ppin.g solenoidal and

tained from a self-consistent simulation for a beam initially quadrupole focusing fields

with a nonlinear velocity profile witlv=0.25. It is evident in As another example of corkscrewing elliptic beam equi-
Fig. 4 that there is excellent agreement between the predidibrium, we consider the matching and transport of an ini-
tion of the rms envelope equatio®4a and (24b) and the tially round beam into a periodic focusing channel consisting
results of the self-consistent simulation, despite that the

transverse flow velocity is perturbed substantially. 300 ' ]
We now examine the evolution of the particle distribution ézsor @v=00 :

if the nonlinearity in the initial transverse flow velocity pro- g I

file is introduced and compare with equilibrium beam propa- & 2001

gation. The results are summarized in Figs. 5 and 6. Figure 5 & 150} | ]

shows a comparison between particle distributions in the ‘%

configuration space with and without nonlinearity in the ini- g""" ]

tial transverse flow velocity at three axial positions/S 2 sof 1

=0, 1.0, and 2.5. These axial positions are chosen such that . ) ,

a(s)=h(s). In Fig. 5, the plots shown on the left correspond 00 02 04 06 08 10 12

to »=0 and those on the right to=0.25. Forry=0.25, the r/2a

initially round beam develops sharp edges after the first lat- 300 ' i T

tice, becoming partially hollow subsequentlysa&=2.5. In 850l V=025 il 1

Fig. 6b), the radial distribution of 3072 macroparticles at S

s/S=2.5 shows that the density at the edge is twice the den- e 2001 | ]

sity at the center of the beam and that there is a small halo i 150 1

extending outward beyond the radius where the density 2

reaches its maximum. The partially hollow density profile gzoo- j

shown in Fig. @b) is similar to, but not as pronounced as, 2 sof .

that observed in the heavy ion beam injector experiment at .

oD

LBNL [11]. In contrast to the case with=0.25, the beam 0 02 04 06 08 10 12
propagates in an equilibrium state for=0 without beam r/2a

hollowing and without any significant beam halo formation,  FIG. 6. Radial distribution of the macroparticlessas=2.5 for
as shown in Fig. &). (@ »=0 and(b) v=0.25.
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FIG. 7. Plots of focusing and beam parameters versus normal- x (mm) x (mm)

ized propagation distanc#S for an equilibrium beam in a tapered
linear focusing channel consisting of overlapping periodic solenoi- FIG. 8. Particle distributions in configuration space obtained
dal and alternating-gradient quadrupole magnetic fields. Here from the simulation for the case shown in Fig. 7.
=1.6x10"° andS=1.0m. In(a) the solid and dashed curves are
dimensionless focusing parameté&%«,(s) and sZKq(s), respec- solution ats/S=1 using a shooting method. The results are
tively; in (b) the solid and dashed curves are the beam envelopeshown in Fig. 7 forK =1.6x 10 ° andS=1.0m. The solid
a(s) andb(s) predicted by Eq(14), whereas the solid dots and and dashed curves in Fig(bj are calculated envelopegs)
open circles are obtained from the simulation(dnthe solid curve  andb(s), and the solid curve in Fig.(@ is the angled(s).
and open circles are the angles of the beam ellipses obtained from We have validated the exact steady-state solutions using
Eqg. (14) and the simulation, respectively. self-consistent simulations. In the simulations, use is made of
) ] ) ] Green’s function method to determine electrostatic fields
of overlapping solenoidal and quadrupole focusing fieldsgenerated by the charged particles in the beam and image
Flgure2 1@ ShO\QVS plots of dimensionless focusing param-charges due to a perfectly conducting cylindrical tube of ra-
etersS°k, and Sk versus propagation distane€S for the  giysy, . A detailed description of the simulation code was
channel. In Fig. f@), the width of solenoidal and quadrupole presented earligil9]. For the focusing parameters shown in
magnets is 03. In the matching section (0s<S), twWo  Fig. 7(a), 10" macroparticles are loaded in the present simu-
quadrupoles a/S=0.25 ands/S=0.75 are placed at angles |ation according to the initial distribution function
¢q= —50° andgp,= —40°, respectively. In the periodic fo-
cusing section £>9), the quadrupoles are placed at,
=0° in the first cell (:s/S<2) and are rotated by 120°
in each of subsequent cells, yielding a periodicity &f&r  whereny(x,,0) andV, (x, ,0) are the initial density and ve-
the channel. To determine the angles and the strengths of thecity profiles defined in Eqs(5) and (6), respectively,
matching quadrupoles, we first find from Ed4) periodic ~ T(x,)=To(x*/a®?+y?/b?—1) is an effective temperature
solutions with a(s+S)=a(s), b(s+S)=Db(s), ay(s+9) profile, andT, is a constant chosen to give an initial total
=ay(8), ay(s+S)=ay(s), andf(s+3S)=6(s) in the pe- times rmg emittance of 0.X 10 ®mrad. The conducting
riodic focusing section and then match the initially roundcylindrical tube radius is chosen to bg=10.0 mm. Results
beam witha(0)=b(0) anda,(0)=a,(0) with the periodic  of the simulation are summarized in Figgb), 7(c), and 8.

F(xy X)) =np(x,,00exp{— [X] Bpc— V1 (X, 0%/ T(x,)},
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Shown in Figs. ) and 7c) is the excellent agreement fluid round rigid-rotor equilibrium and both the periodically
between the beam envelopats) andb(s) and angled(s) focused rigid-rotor Vlasov equilibrium and Kapchinskij-
obtained from the self-consistent simulation and those preVladimirskij equilibrium in the zero-emittance limit.
dicted by the generalized beam envelope equati@ds as Examples and applications of the present equilibrium
expected. In Fig. 8, particle distributions in the plaiey) beam theory were discussed. In particular, a corkscrewing
are plotted at several axial locations of the matching sectioelliptic beam equilibrium in a uniform solenoidal magnetic
and the periodic focusing section, showing the transitiorfield was obtained. As an important application of the
from a round beam to a corkscrewing elliptic beam in thepresent equilibrium beam theory, a general technique was
focusing channel. The elliptic beam completes a full clock-developed and demonstrated with an example to control
wise turn froms/S=1 tos/S=4 [see Figs. 8)-8(h)]. Both  large-amplitude density and flow velocity fluctuatiossich
image charge effects and emittance growth are negligiblgs beam hollowing and halo formatjonften observed in
small. The density profiles are computed at various axialltrahigh-brightness beams. Furthermore, an ultrahigh-
locations in the simulation, and they are found in good agreebrightness beam equilibrium in a periodic focusing channel
ment with the density profile defined in E@). It should be  consisting of overlapping solenoidal and quadrupole focus-
stressed that the beam propagates in a steady state withang field was obtained to illustrate a wide range of applica-

either beam hollowing or halo formation. bility of the present equilibrium beam theory in manipulating
ultrahigh-brightness beams.
VI. CONCLUSIONS It is anticipated that the equilibrium beam theory pre-

) _sented in this paper can be used to perfectly match ultrahigh-

We have shown that there exists a new class of cold-fluigyrightness beams in practical beam transport systems and to
corkscrewing  elliptic beam equilibria  for ultrahigh- design electron beam equilibrium configurations in new
brightness,  space-charge-dominated beam  propagatigcuum electronic devices. Finally, the present cold-fluid
through a linear focusing channel consisting of uniform so-equilibrium theory can be generalized to include the effect of

lenoidal, periodic solenoidal, and/or alternating-gradientinite beam emittance, which will be discussed in a future
quadrupole focusing magnets in an arbitrary arrangement ingyticle.

cluding field tapering. Generalized beam envelope equations
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